Answer: 2.36
Step-by-step explanation:
The formula to find the margin of error is given by :-
[tex]E=z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]
Given : Significance level : [tex]\alpha: 1-0.94=0.06[/tex]
Critical value : [tex]z_{\alpha/2}=1.88[/tex] [Using standard normal distribution table]
Sample size : n=49
Standard deviation : 8.8 ounces
Then , the margin of error will be :-
[tex]E=(1.88)\dfrac{8.8}{\sqrt{49}}\\\\\Rightarrow\ E=2.36342857143\approx2.36[/tex]
Hence, the margin of error associated with a 94% confidence interval for the true population mean backpack weight = 2.36