Answer:
b=11
Step-by-step explanation:
Given that
n=10, ∑x=55 , ∑y=55 ∑xy=220
[tex]\sum x^2=385,\sum y^2=385[/tex]
Lets take linear equation
y= ax + b
By using regression method we know that
[tex]a=\frac{n\sum xy-\sum x \sum y}{n\sum x^2-(\sum x)^2}[/tex]
[tex]b=\frac{\sum y-a\sum x}{n}[/tex]
Now by putting the values
[tex]a=\frac{n\sum xy-\sum x \sum y}{n\sum x^2-(\sum x)^2}[/tex]
[tex]a=\frac{10\times 220-55\times 55}{10\times 385-(55)^2}[/tex]
a= -1
[tex]b=\frac{\sum y-a\sum x}{n}[/tex]
[tex]b=\frac{55+55}{10}[/tex]
b=11