The acid dissociation Ka of propionic acid C2H5CO2H is 1.310x10−5. Calculate the pH of a 3.010x10−4M aqueous solution of propionic acid. Round your answer to 2 decimal places.

Respuesta :

Answer : The pH of the solution is, 4.25

Solution :  Given,

Concentration (C) = [tex]3.010\times 10^{-4}M[/tex]

Acid dissociation constant = [tex]k_a=1.310\times 10^{-5}[/tex]

The equilibrium reaction for dissociation of [tex]C_2H_5CO_2H[/tex] (weak acid) is,

                           [tex]C_2H_5CO_2H\rightleftharpoons C_2H_5CO_2^-+H^+[/tex]

initially conc.        c                       0                0

At eqm.             [tex]c(1-\alpha)[/tex]                [tex]c\alpha[/tex]                [tex]c\alpha[/tex]

where, [tex]\alpha[/tex] is degree of dissociation

First we have to calculate the value of [tex]\alpha[/tex]

[tex]K_a=\frac{(c\alpha)\times (c\alpha)}{c(1-\alpha)}[/tex]

[tex]K_a=\frac{c(\alpha)^2}{(1-\alpha)}[/tex]

Now put all the given values in this formula, we get:

[tex]1.310\times 10^{-5}=\frac{(3.010\times 10^{-4})(\alpha)^2}{(1-\alpha)}[/tex]

[tex]\alpha=0.188[/tex]

Now we have to calculate the hydrogen ion concentration.

[tex][H^+]=c\alpha=(3.010\times 10^{-4})\times (0.188)=5.66\times 10^{-5}M[/tex]

Now we have to calculate the pH.

[tex]pH=-\log [H^+][/tex]

[tex]pH=-\log (5.66\times 10^{-5})[/tex]

[tex]pH=4.25[/tex]

Therefore, the pH of the solution is, 4.25