Respuesta :

I would make a list of the factors of 12. 1 and 12; 2 and 6; 3 and 4. However none of these add to 10. I would talk to a teacher about this one, since none of the answers are apparent at the moment. I will keep working.
do those 2 equaiton you did
minus x on top

y=10-x
sub for y
x(10-x)=12
distribute
10x-x^2=12
minus (10x-x^2) both sides
0=x^2-10x+12

use quadratic formula
in form
ax^2+bx+c=0
x=[tex] \frac{-b+/- \sqrt{b^{2}-4ac} }{2a} [/tex]

a=1
b=-10
c=12
x=[tex] \frac{-(-10)+/- \sqrt{(-10)^{2}-4(1)(12)} }{2(1)} [/tex]
x=[tex] \frac{10+/- \sqrt{100-48} }{2} [/tex]
x=[tex] \frac{10+/- \sqrt{52} }{2} [/tex]
x=[tex] \frac{10+/- 2\sqrt{13} }{2} [/tex]
x=[tex] 5+/- \sqrt{13}  [/tex]


x=[tex] \frac{5+ 2\sqrt{13} }{2} [/tex] or [tex] \frac{5- 2\sqrt{13} }{2} [/tex]

aprox

x=1.39445 or 8.60555
those are the 2 numbers since x and y can switch