[tex]\bf ~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\dotfill&19000\\ P=\textit{original amount deposited}\\ r=rate\to 8\%\to \frac{8}{100}\dotfill &0.08\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{semiannually, thus twice} \end{array}\dotfill &2\\ t=years\dotfill &5 \end{cases}[/tex]
[tex]\bf 19000=P\left(1+\frac{0.08}{2}\right)^{2\cdot 5}\implies 19000=P(1.04)^{10} \\\\\\ \cfrac{19000}{1.04^{10}}=P\implies 12835.72\approx P[/tex]