Answer:
[tex]t=d/(v_{o}*cos(\alpha ))[/tex]
[tex]y =d*tan(\alpha )- 1/2*g^{2}d^{2}/(v_{o}^{2}*(cos(\alpha ))^2)[/tex]
Explanation:
Kinematics equation in the axis X:
[tex]x=v_{o}*cos(\alpha )*t[/tex]
The projectile strikes the building at time t:
[tex]d=v_{o}*cos(\alpha )*t[/tex]
[tex]t=d/(v_{o}*cos(\alpha ))[/tex] (1)
Kinematics equation in the axis Y:
[tex]y =v_{o}*sin(\alpha )*t - 1/2*gt^{2}[/tex] (2)
We replace (1) in (2):
[tex]y =v_{o}*sin(\alpha )*d/(v_{o}*cos(\alpha )) - 1/2*g(d/(v_{o}*cos(\alpha )))^{2}[/tex]
[tex]y =d*tan(\alpha )- 1/2*g^{2}d^{2}/(v_{o}^{2}*(cos(\alpha ))^2)[/tex] (2)