Respuesta :
Answer:
A.[tex]a=203.14\ \frac{m}{s^2}[/tex]
B.s=397.6 m
Explanation:
Given that
speed u= 284.4 m/s
time t = 1.4 s
here he want to reduce the velocity from 284.4 m/s to 0 m/s.
So the final speed v= 0 m/s
We know that
v= u + at
So now by putting the values
0 = 284.4 -a x 1.4 (here we take negative sign because this is the case of de acceleration)
[tex]a=203.14\ \frac{m}{s^2}[/tex]
So the acceleration while stopping will be [tex]a=203.14\ \frac{m}{s^2}[/tex].
Lets take distance travel before come top rest is s
We know that
[tex]v^2=u^2-2as[/tex]
[tex]0=284.4^2-2\times 203.14\times s[/tex]
s=397.6 m
So the distance travel while stopping is 397.6 m.
Answer:
[tex]a) acceleration = -203.14 m/s^2\\\\b) distance = 199.1 m[/tex]
Explanation:
Given
initial speed u = 284.4 m/s
final speed v = 0 m/s
duration t = 1.4 s
Solution
a)
Acceleration
[tex]a = \frac{v - u}{t} \\\\a = \frac{0-284.4}{1.4} \\\\a = -203.14 m/s^2[/tex]
b)
Distance
[tex]v^2 - u^2 = 2as\\\\0^2 - 284.4^2 = 2 \times (-203.14) \times S\\\\S = 199.1 m[/tex]