Respuesta :

C- 8
D- 8i
E- 11

Those are all the ones I know, mark as brainliest pls :)

Answer:  (a) 3     (b) -4      (c) 8      (d) 8i        (e) 11

Step-by-step explanation:

For a cubed root, you need three like terms on the inside to make one on the outside.

[tex]a)\quad \sqrt[3]{27}\quad = \sqrt[3]{3\cdot3\cdot3}\quad =\large\boxed{3}\\\\b)\quad \sqrt[3]{-64}\quad = \sqrt[3]{-4\cdot-4\cdot-4}\quad =\large\boxed{-4}[/tex]

For a square root, you need two like terms on the inside to make one on the outside. Reminder that √-1 = i

[tex]c)\quad \sqrt{64}\quad = \sqrt{8\cdot8}\quad =\large\boxed{8}\\\\d)\quad \sqrt{-64}\quad = \sqrt{-1\cdot8\cdot8}\quad =\large\boxed{8i}\\\\e)\quad \sqrt{121}\quad = \sqrt{11\cdot11}\quad =\large\boxed{11}[/tex]