Respuesta :
Answer:
- Mass of NaH₂PO₄·H₂O = 8.542 g
- Mass of Na₂HPO₄ = 5.410 g
Explanation:
Keeping in mind the equilibrium:
H₂PO₄⁻ ↔ HPO₄⁻² + H⁺
We use the Henderson-Hasselbalch equation (H-H):
pH = pka + [tex]log\frac{[A^{-}]}{[HA]}[/tex]
For this problem [A⁻] = [HPO₄⁻²] and [HA] = [H₂PO₄⁻]
From literature we know that pka = 7.21, from the problem we know that pH=7.00 and that
[HPO₄⁻²] + [H₂PO₄⁻] = 0.100 M
From this equation we can express [H₂PO₄⁻] in terms of [HPO₄⁻²]:
[H₂PO₄⁻] = 0.100 M - [HPO₄⁻²]
And then replace [H₂PO₄⁻] in the H-H equation, in order to calculate [HPO₄⁻²]:
[tex]7.00=7.21+log\frac{[HPO4^{-2}] }{0.100 M-[HPO4^{-2}]} \\-0.21=log\frac{[HPO4^{-2}] }{0.100 M-[HPO4^{-2}]}\\10^{-0.21} =\frac{[HPO4^{-2}] }{0.100 M-[HPO4^{-2}]}\\0.616*(0.100M-[HPO4^{-2}])=[HPO4^{-2}]\\0.0616 M = 1.616*[HPO4^{-2}]\\0.03812 M =[HPO4^{-2}][/tex]
With the value of [H₂PO₄⁻], we calculate [HPO₄⁻²]:
[HPO₄⁻²] + 0.0381 M = 0.100 M
[HPO₄⁻²] = 0.0619 M
Finally, using the concentrations, the volume, and the molecular weights; we can calculate the weight of each substance:
- Mass of NaH₂PO₄·H₂O = 0.0619 M * 1 L * 138 g/mol = 8.542 g
- Mass of Na₂HPO₄ = 0.0381 M * 1 L * 142 g/mol = 5.410 g