Suppose f (t) = −11t2 is the position at time t of an object moving along the x axis. Use the limit definition to find the velocity of the object at time t0 = −5.

Respuesta :

Answer:

The velocity is [tex]v(-5)=110[/tex].

Explanation:

We have the position as a function of time: [tex]f (t) = -11t^{2}[/tex]

Instantaneous velocity at [tex]t=t_{0}[/tex] is defined as:

[tex]v(t_{0})= \lim_{\triangle t \to 0} \frac{f(t_{0}+\triangle t)-f(t_{0}) }{\triangle t}[/tex]

If [tex]t_{0}=-5[/tex],

[tex]v(-5)= \lim_{\triangle t \to 0} \frac{f(-5+\triangle t)-f(-5) }{\triangle t}=\lim_{\triangle t \to 0} \frac{11(-5+\triangle t)^{2} -11(-5)^{2}  }{\triangle t}[/tex]

[tex]=\lim_{\triangle t \to 0} \frac{11(25+10\triangle t+\triangle t^{2})  -275  }{\triangle t}=\lim_{\triangle t \to 0} \frac{110\triangle t+11\triangle t^{2}}{\triangle t}[/tex]

[tex]\lim_{\triangle t \to 0} \frac{(110+11\triangle t)\triangle t}{\triangle t}=\lim_{\triangle t \to 0} 110+11\triangle t=110[/tex]

So,

[tex]v(-5)=110[/tex].