Answer:
Energy of UV light [tex]=4.95\times 10^{-19}j[/tex]
Energy of green light [tex]=3.6\times 10^{-19}j[/tex]
Energy of infrared light [tex]=2.2\times 10^{-19}j[/tex]
Explanation:
We have given the wavelength of UV light = 400 nm [tex]=400\times 10^{-9}m[/tex] , wavelength of green light = 550 nm and wavelength of infrared = 900 nm
Speed of light [tex]c=3\times 10^8m/sec[/tex]
Plank's constant [tex]h=6.6\times 10^{-34}[/tex]
Energy of the signal is given by [tex]E=h\nu =h\frac{c}{\lambda }[/tex]
So energy of UV light [tex]E=\frac{6.6\times 10^{-34}\times3\times 10^8}{400\times 10^{-9}}=4.95\times 10^{-19}j[/tex]
Energy of green light [tex]E=\frac{6.6\times 10^{-34}\times3\times 10^8}{550\times 10^{-9}}=3.6\times 10^{-19}j[/tex]
Energy of infrared light [tex]E=\frac{6.6\times 10^{-34}\times3\times 10^8}{900\times 10^{-9}}=2.2\times 10^{-19}j[/tex]