Consider light of wavelengths 400 nm (UV), 550 nm (green, visible), and 900 nm (infrared). What is the energy associated with a 400 nm (UV) photon, a 550 nm (green, visible) photon, and a 900 nm (infrared) photon?

Respuesta :

Answer:

Energy of UV light [tex]=4.95\times 10^{-19}j[/tex]

Energy of green light [tex]=3.6\times 10^{-19}j[/tex]

Energy of infrared light [tex]=2.2\times 10^{-19}j[/tex]

Explanation:

We have given the wavelength of UV light = 400 nm [tex]=400\times 10^{-9}m[/tex] , wavelength of green light = 550 nm and wavelength of infrared = 900 nm

Speed of light [tex]c=3\times 10^8m/sec[/tex]

Plank's constant [tex]h=6.6\times 10^{-34}[/tex]

Energy of the signal is given by [tex]E=h\nu =h\frac{c}{\lambda }[/tex]

So energy of UV light [tex]E=\frac{6.6\times 10^{-34}\times3\times 10^8}{400\times 10^{-9}}=4.95\times 10^{-19}j[/tex]

Energy of green light [tex]E=\frac{6.6\times 10^{-34}\times3\times 10^8}{550\times 10^{-9}}=3.6\times 10^{-19}j[/tex]

Energy of infrared light [tex]E=\frac{6.6\times 10^{-34}\times3\times 10^8}{900\times 10^{-9}}=2.2\times 10^{-19}j[/tex]