A rough estimate of the radius of a nucleus is provided by the formula r 5 kA1/3, where k is approximately 1.3 × 10213 cm and A is the mass number of the nucleus. Estimate the den- sity of the nucleus of 127I (which has a nuclear mass of 2.1 × 10222 g) in grams per cubic centimeter. Compare with the density of solid iodine, 4.93 g cm23.

Respuesta :

Answer:

Density of 127 I = [tex]\rm 1.79\times 10^{14}\ g/cm^3.[/tex]

Also, [tex]\rm Density\ of\ ^{127}I=3.63\times 10^{13}\times Density\ of\ the\ solid\ iodine.[/tex]

Explanation:

Given, the radius of a nucleus is given as

[tex]\rm r=kA^{1/3}[/tex].

where,

  • [tex]\rm k = 1.3\times 10^{-13} cm.[/tex]
  • A is the mass number of the nucleus.

The density of the nucleus is defined as the mass of the nucleus M per unit volume V.

[tex]\rm \rho = \dfrac{M}{V}=\dfrac{M}{\dfrac 43 \pi r^3}=\dfrac{M}{\dfrac 43 \pi (kA^{1/3})^3}=\dfrac{M}{\dfrac 43 \pi k^3A}.[/tex]

For the nucleus 127 I,

Mass, M = [tex]\rm 2.1\times 10^{-22}\ g.[/tex]

Mass number, A = 127.

Therefore, the density of the 127 I nucleus is given by

[tex]\rm \rho = \dfrac{2.1\times 10^{-22}\ g}{\dfrac 43 \times \pi \times (1.3\times 10^{-13})^3\times 127}=1.79\times 10^{14}\ g/cm^3.[/tex]

On comparing with the density of the solid iodine,

[tex]\rm \dfrac{Density\ of\ ^{127}I}{Density\ of\ the\ solid\ iodine}=\dfrac{1.79\times 10^{14}\ g/cm^3}{4.93\ g/cm^3}=3.63\times 10^{13}.\\\\\Rightarrow Density\ of\ ^{127}I=3.63\times 10^{13}\times Density\ of\ the\ solid\ iodine.[/tex]