The slope f′(x) at each point (x,y) on a curve y=f(x) is given, along with a point (a,b) on the curve. Use this information to find f(x). f′(x) = 4x/(1 + 7x^2) (0,10) NOTE: OF absolute value symbols, | | , are needed for the answer, then use abs(expression). For example, ln|x| must be entered as ln(abs(x))

Respuesta :

[tex]f'(x)=\dfrac{4x}{1+7x^2}[/tex]

Integrating gives

[tex]f(x)=\displaystyle\int\frac{4x}{1+7x^2}\,\mathrm dx[/tex]

To compute the integral, substitute [tex]u=1+7x^2[/tex], so that [tex]\frac27\,\mathrm du=4x\,\mathrm dx[/tex]. Then

[tex]f(x)=\displaystyle\frac27\int\frac{\mathrm du}u=\frac27\ln|u|+C[/tex]

Since [tex]u=1+7x^2>0[/tex] for all [tex]x[/tex], we can drop the absolute value, so we end up with

[tex]f(x)=\dfrac27\ln(1+7x^2)+C[/tex]

Given that [tex]f(0)=10[/tex], we have

[tex]10=\dfrac27\ln1+C\implies C=10[/tex]

so that

[tex]\boxed{f(x)=\dfrac27\ln(1+7x^2)+10}[/tex]