Answer:
Explanation:
So, lets say the runner stars from the position [tex]x_0[/tex]. Lets make this point the origin of a coordinate system in which the vector i points north.
[tex]x_0 = (0,0)[/tex]
Now, in the first sections of the race, he runs 20 meters north, so, he finds himself at:
[tex]x_1 = x_0 + 20 m * i = (0,0) \ + (20 \ m,0)[/tex].
[tex]x_1 = (20 \ m,0)[/tex].
The, he runs 30 meters south
[tex]x_2 = x_1 - 30 \ m * i = (20 \ m,0)-(30 \ m,0)[/tex]
[tex]x_2 = (-10 \ m,0)[/tex]
Finally, he runs 40 meter north
[tex]x_3 = x_2 + 40 \ m * i = (-10 \ m,0)+(40 \ m,0)[/tex]
[tex]x_3 = (30 \ m,0)[/tex].
This is our displacement vector. Now, the average speed will be:
[tex]\frac{distance}{time}[/tex].
The distance its the length of the displacement vector,
[tex]d=\sqrt{x^2+y^2}[/tex]
[tex]d=\sqrt{(30 \ m)^2+0^2}[/tex]
[tex]d=30 \ m[/tex]
So, the average speed its:
[tex]\frac{30 \ m }{30 \ s} = 1\frac{m}{s}[/tex].
The average velocity, instead, its:
[tex]\vec{v} = \frac{displacement}{time}[/tex]
[tex]\vec{v} = \frac{(30 \ m ,\ 0)}{30 \ s}[/tex]
[tex]\vec{v} = (1 \ \frac{m}{s} ,\ 0)[/tex]
This is, 1 m/s north.