(A) Which is the equation of Line b? 1. y=−14x+54 2. y=4x+3 3. y=x+5441 4. y=4x−3
(B) Which is the equation of Line d? 1. y=3x+3 2. y=−13x−3 3. y=13x+3 4. y=−3x−3

A Which is the equation of Line b 1 y14x54 2 y4x3 3 yx5441 4 y4x3B Which is the equation of Line d 1 y3x3 2 y13x3 3 y13x3 4 y3x3 class=

Respuesta :

Check the picture below.

all we need to get the equation of the line is two points on it, in this case those would be (-3,2) and (1,1),

[tex]\bf (\stackrel{x_1}{-3}~,~\stackrel{y_1}{2})\qquad (\stackrel{x_2}{1}~,~\stackrel{y_2}{1}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{1}-\stackrel{y1}{2}}}{\underset{run} {\underset{x_2}{1}-\underset{x_1}{(-3)}}}\implies \cfrac{-1}{1+3}\implies -\cfrac{1}{4}[/tex]

[tex]\bf \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{2}=\stackrel{m}{-\cfrac{1}{4}}[x-\stackrel{x_1}{(-3)}]\implies y-2=-\cfrac{1}{4}(x+3) \\\\\\ y-2=-\cfrac{1}{4}x-\cfrac{3}{4}\implies y=-\cfrac{1}{4}x-\cfrac{3}{4}+2\implies y=-\cfrac{1}{4}x+\cfrac{5}{4}[/tex]

Ver imagen jdoe0001