Respuesta :
For this case we must factor the following expression:
[tex]x ^ 2-3x-4[/tex]
We must find two numbers that, when multiplied, result in -4, and when added, result in -3.
These numbers are: -4 and +1
[tex]-4 + 1 = -3\\-4 * (+ 1) = - 4[/tex]
So:
[tex]x ^ 2-3x-4 = (x-4) (x + 1)[/tex]
Answer:
[tex](x-4) (x + 1)[/tex]
Option A
Answer:
(x+1) and (x-4)
Step-by-step explanation:
Since, factors of an expression is the values which after multiplying together give the same expression.
Given quadratic equation,
[tex]x^2 - 3x - 4[/tex]
By the middle term splitting,
[tex]x^2 - (4 - 1)x - 4[/tex]
By distributive property,
[tex]x^2 - 4x + x - 4[/tex]
[tex]x(x-4)+1(x-4)[/tex]
[tex](x+1)(x-4)[/tex]
Since,
[tex]x^2 - 3x - 4=(x+1)(x-4)[/tex]
i.e. the factors of [tex]x^2 - 3x - 4[/tex] are (x+1) and (x-4).