Answer:
[tex]D_{B}=1173.98m\\D_{C}=675.29m[/tex]
Explanation:
If we express all of the cordinates in their rectangular form we get:
A = (1404.77 , 655.06) m
[tex]B = A + ( -D_{B} *sin(41) , -D_{B} * cos(41) )[/tex]
[tex]C = A + B + ( -D_{C} *cos(20) , D_{C} * sin(20) )[/tex]
Since we need C to be (0,0) we stablish that:
[tex]C = (0,0) = A + B + ( -D_{C} *cos(20) , D_{C} * sin(20) )[/tex]
That way we make an equation system from both X and Y coordinates:
[tex]A_{x} + B_{x} + C_{x} = 0[/tex]
[tex]A_{y} + B_{y} + C_{y} = 0[/tex]
Replacing values:
[tex]1404.77 - D_{B}*sin(41) - D_{C}*cos(20) = 0[/tex]
[tex]655.06 - D_{B}*cos(41) + D_{C}*sin(20) = 0[/tex]
With this system we can solve for both Db and Dc and get the answers to the question:
[tex]D_{B}=1173.98m[/tex]
[tex]D_{C}=675.29m[/tex]