contestada

If y(x, t) = (4.7 mm)sin(kx + (675 rad/s)t + ϕ) describes a wave traveling along a string, how much time does any given point on the string take to move between displacements y = +2.0 mm and y = −2.0 mm?

Respuesta :

Answer:

It takes 0.00127 seconds.

Explanation:

The equation its

[tex]y(x,t) = 4.7 \ mm  \ sin ( kx + 675 \frac{rad}{s} t + \phi)[/tex].

We want the time for ANY POINT, so, for convenience, lets take x=0

[tex]y(0,t) = 4.7 \ mm  \ sin ( k*0 + 675 \frac{rad}{s} t + \phi)[/tex].

[tex]y(0,t) = 4.7 \ mm  \ sin ( 675 \frac{rad}{s} t + \phi)[/tex].

Now, we want the positions

[tex]y(0,t_1)=2 \ mm[/tex]

[tex]y(0,t_2)=-2 \ mm[/tex]

so, for the first position:

[tex]y(0,t_1)=2 \ mm[/tex]

[tex]2 \ mm = 4.7 \ mm  \ sin ( 675 \frac{rad}{s} t_1 + \phi)[/tex].

[tex]\frac{2 \ mm} {4.7 \ mm }=  sin ( 675 \frac{rad}{s} t_1 + \phi)[/tex].

[tex] 0.42 =  sin ( 675 \frac{rad}{s} t_1 + \phi)[/tex].

[tex] sin^-1(0.42) =  675 \frac{rad}{s} t_1 + \phi)[/tex].

and for the second one:

[tex]y(0,t_2)=-2 \ mm[/tex]

[tex]-2 \ mm = 4.7 \ mm  \ sin ( 675 \frac{rad}{s} t_2 + \phi)[/tex].

[tex]\frac{-2 \ mm} {4.7 \ mm }=  sin ( 675 \frac{rad}{s} t_2 + \phi)[/tex].

[tex] -0.42 =  sin ( 675 \frac{rad}{s} t_2 + \phi)[/tex].

[tex] sin^-1(0.42) =  675 \frac{rad}{s} t_2 + \phi)[/tex].

Now, we can subtract both:

[tex]sin^-1(0.42) -sin^-1(-0.42) =  675 \frac{rad}{s} t_1 + \phi - 675 \frac{rad}{s} t_2 + \phi[/tex]

[tex]sin^-1(0.42) -sin^-1(-0.42) =  675 \frac{rad}{s} t_1 - 675 \frac{rad}{s} t_2[/tex]

[tex]sin^-1(0.42) -sin^-1(-0.42) =  675 \frac{rad}{s} (t_1 - t_2)[/tex]

[tex]\frac{sin^-1(0.42) -sin^-1(-0.42)}{ 675 \frac{rad}{s}} = (t_1 - t_2)[/tex]

[tex]\frac{0.43 - (-0.43)}{ 675 \frac{rad}{s}} = (t_1 - t_2)[/tex]

[tex]\frac{0.86}{ 675 \frac{rad}{s}} = (t_1 - t_2)[/tex]

[tex] 0.00127 s = (t_1 - t_2)[/tex]

The strings take 0.00127 seconds.