A uranium and iron atom reside a distance R = 44.10 nm apart. The uranium atom is singly ionized; the iron atom is doubly ionized. Calculate the distance r from the uranium atom necessary for an electron to reside in equilibrium. Ignore the insignificant gravitational attraction between the particles.

Respuesta :

Answer:

distance r from the uranium atom is 18.27 nm

Explanation:

given data

uranium and iron atom distance R = 44.10 nm

uranium atom = singly ionized

iron atom = doubly ionized

to find out

distance r from the uranium atom

solution

we consider here that uranium electron at distance = r

and electron between uranium and iron so here

so we can say electron and iron  distance = ( 44.10 - r ) nm

and we know single ionized uranium charge q2= 1.602 × [tex]10^{-19}[/tex] C

and charge on iron will be q3 = 2 × 1.602 × [tex]10^{-19}[/tex] C

so charge on electron is q1 =  - 1.602 × [tex]10^{-19}[/tex] C

and we know F = [tex]k\frac{q*q}{r^{2} }[/tex]  

so now by equilibrium

Fu = Fi

[tex]k\frac{q*q}{r^{2} }[/tex]  =  [tex]k\frac{q*q}{r^{2} }[/tex]

put here k = [tex]9*10^{9}[/tex] and find r

[tex]9*10^{9}\frac{1.602 *10^{-19}*1.602 *10^{-19}}{r^{2} }[/tex]  =  [tex]9*10^{9}\frac{1.602 *10^{-19}*1.602 *10^{-19}}{(44.10-r)^{2} }[/tex]

[tex]\frac{1}{r^{2} } = \frac{2}{(44.10 -r)^2}[/tex]

r = 18.27 nm

distance r from the uranium atom is 18.27 nm