Answer:
distance r from the uranium atom is 18.27 nm
Explanation:
given data
uranium and iron atom distance R = 44.10 nm
uranium atom = singly ionized
iron atom = doubly ionized
to find out
distance r from the uranium atom
solution
we consider here that uranium electron at distance = r
and electron between uranium and iron so here
so we can say electron and iron distance = ( 44.10 - r ) nm
and we know single ionized uranium charge q2= 1.602 × [tex]10^{-19}[/tex] C
and charge on iron will be q3 = 2 × 1.602 × [tex]10^{-19}[/tex] C
so charge on electron is q1 = - 1.602 × [tex]10^{-19}[/tex] C
and we know F = [tex]k\frac{q*q}{r^{2} }[/tex]
so now by equilibrium
Fu = Fi
[tex]k\frac{q*q}{r^{2} }[/tex] = [tex]k\frac{q*q}{r^{2} }[/tex]
put here k = [tex]9*10^{9}[/tex] and find r
[tex]9*10^{9}\frac{1.602 *10^{-19}*1.602 *10^{-19}}{r^{2} }[/tex] = [tex]9*10^{9}\frac{1.602 *10^{-19}*1.602 *10^{-19}}{(44.10-r)^{2} }[/tex]
[tex]\frac{1}{r^{2} } = \frac{2}{(44.10 -r)^2}[/tex]
r = 18.27 nm
distance r from the uranium atom is 18.27 nm