Answer:
[tex]V_{3.01}=-93.2m/s[/tex]
[tex]V_{3.005}=-93.1m/s[/tex]
[tex]V_{3.002}=-93.04m/s[/tex]
[tex]V_{3.001}=-93.02m/s[/tex]
[tex]V_{3}=-93m/s[/tex]
Explanation:
To calculate average velocity we need the position for both instants t0 and t1.
Now we will proceed to calculate all the positions we need:
[tex]Y_{3}=-99m/s[/tex]
[tex]Y_{3.01}=-99.932m/s[/tex]
[tex]Y_{3.005}=-99.4655m/s[/tex]
[tex]Y_{3.002}=-99.18608m/s[/tex]
[tex]Y_{3.001}=-99.09302m/s[/tex]
Replacing these values into the formula for average velocity:
[tex]V_{3-3.01}=\frac{Y_{3.01}-Y_{3}}{3.01-3}=-93.2m/s[/tex]
[tex]V_{3-3.005}=\frac{Y_{3.005}-Y_{3}}{3.005-3}=-93.1m/s[/tex]
[tex]V_{3-3.002}=\frac{Y_{3.002}-Y_{3}}{3.005-3}=-93.04m/s[/tex]
[tex]V_{3-3.001}=\frac{Y_{3.001}-Y_{3}}{3.001-3}=-93.02m/s[/tex]
To know the actual velocity, we derive the position and we get:
[tex]V=27-40t = -93m/s[/tex]