Respuesta :
Answer:
[tex]\rm 4.554\ m m.[/tex]
Explanation:
Given:
- Initial temperature, [tex]\rm T_i=23.0\ ^\circ C=23 + 273.15 = 296.15\ K.[/tex]
- Final temperature, [tex]\rm T_f = -78.0\ ^\circ C = -78+273.15=195.15\ K.[/tex]
- Diameter of the hole, [tex]\rm d = 4.500\ m = 4.500\times 10^{-3}\ m.[/tex]
- Expansion coefficient of the Aluminum, [tex]\rm \alpha = 2.4\times 10^{-5}\ K^{-1}.[/tex]
Let the diameter of the rivet at [tex]\rm T_i=23.0\ ^\circ C[/tex] be [tex]\rm d_o[/tex], such that,
[tex]\rm d_o=d+\Delta d[/tex]
[tex]\rm \Delta d[/tex] is the elongation in the diameter of the rivet.
We know, The change in the diameter of the rivet is related with the change in temperature as:
[tex]\rm \dfrac{\Delta d}{d_o}=\alpha \Delta T.[/tex]
where, [tex]\rm \Delta T[/tex] is the change in temperature = [tex]\rm T_f-T_i=-195.15-296.15=-491.30\ K.[/tex]
Also, [tex]\rm \Delta d=d_o-d.[/tex]
Using these values,
[tex]\rm \dfrac{d_o-d}{d_o}=\alpha \Delta T\\1-\dfrac{d}{d_o}=\alpha \Delta T\\\dfrac{d}{d_o}=1+\alpha \Delta T\\\Rightarrow d_o = \dfrac{d}{1+\alpha \Delta T}\\=\dfrac{4.500\times 10^{-3}}{1+2.4\times10^{-5}\times (-491.30)}\\=4.554\times 10^{-3}\ m.\\=4.554\ m m.[/tex]
It is the required diameter of the rivet at [tex]-78.0\ ^\circ C[/tex].
The diameter of the rivet when it is cooled to –78 °C, the temperature of dry ice is 4.49 mm
Data obtained from the question
- Original diameter (D₁) = 4.5 mm
- Original temperature (T₁) = 23 °C
- New temperature (T₂) = –78 °C
- Coefficient of expansion (α) = 2.4×10¯⁵ °C¯¹
- New diameter (D₂) =?
How to determine the new diameter
α = D₂ – D₁ / D₁(T₂ – T₁)
2.4×10¯⁵ = D₂ – 4.5 / 4.5(–78 – 23)
2.4×10¯⁵ = D₂ – 4.5 / 4.5(–101)
2.4×10¯⁵ = D₂ – 4.5 / –454.5
Cross multiply
D₂ – 4.5 = 2.4×10¯⁵ × –454.5
D₂ – 4.5 = –0.010908
Collect like terms
D₂ = –0.010908 + 4.5
D₂ = 4.49 mm
Complete question
See attached photo
Learn more about linear expansion:
https://brainly.com/question/23207743
