What sine function represents an amplitude of 4, a period of pi over 2, no horizontal shift, and a vertical shift of −3?


f(x) = −3 sin 4x + 4

f(x) = 4 sin 4x − 3

f(x) = 4 sin pi over 2x − 3

f(x) = −3 sin pi over 2x + 4

Respuesta :

Answer:

[tex]f(x) = 4sin(\frac{\pi}{2}x) - 3[/tex], the third one

Step-by-step explanation:

Explaining the sine function:

The sine function is defined by:

[tex]S = Asin(p(x - x_{0})) + V[/tex]

In which A is the amplitude, [tex]p = \frac{2\pi}{N}[/tex] is the period, [tex]x_{0}[/tex] is the horizontal shift and V is the vertical shift.

So, in your problem:

The amplitude is 4, so A = 4.

The period is [tex]\frac{\pi}{2}[/tex], so [tex]p = \frac{\pi}{2}[/tex].

There is no horizontal shift, so [tex]x_{0} = 0[/tex].

The vertical shift is −3, so V = -3.

The sine function that represents these following conditions is

[tex]f(x) = 4sin(\frac{\pi}{2}x) - 3[/tex], the third one