Respuesta :

Answer: Second option.

Step-by-step explanation:

Given the function f(x):

[tex]f(x) = x^2 - 2x + 8[/tex]

Find [tex]f(x -2)[/tex]:

[tex]f(x -2)=(x-2)^2 - 2(x-2) + 8[/tex]

Remember that:

[tex](a\±b)^2=a^2\±2ab+b^2[/tex]

Then, simplifying:

[tex]f(x -2)=x^2-2(x)(2)+2^2 - 2x+4+ 8\\\\f(x-2)=x^2-6x+16[/tex]

So the function g(x) is:

[tex]g(x)=x^2-6x+16[/tex]

Use the following formula to find the x-coordinate of the vertex of g(x):

[tex]x=\frac{-b}{2a}[/tex]

In this case:

 [tex]a=1\\b=-6[/tex]

Then:

[tex]x=-\frac{-(-6)}{2(1)}=3[/tex]

Substitute this value into the function g(x) in order to find the y-coordinate of the vertex. Since [tex]g(x)=y[/tex], you get:

[tex]y=3^2-6(3)+16=7[/tex]

Therefore, the vertex of g(x) is:

[tex](3,7)[/tex]

Answer:

Second one

Step-by-step explanation: