If BA [a= (-2,-3) b= (1,2)] is extended all the way through A creating a BF and A becomes the midpoint of BF, then what are the coordinates

Respuesta :

frika

Answer:

(-5,-8)

Step-by-step explanation:

If M(x,y) is the midpoint of the segment CD, where [tex]C(x_1,y_1),\ D(x_2,y_2),[/tex] then

[tex]x=\dfrac{x_1+x_2}{2}\\ \\y=\dfrac{y_1+y_2}{2}[/tex]

You are given two points A(-2,-3) and B(1,2), let point F be the point with coordinates (x,y). Yuo know, that point A is the midpoint of BF, then

[tex]x_A=\dfrac{x_B+x_F}{2}\\ \\y_A=\dfrac{y_B+y_F}{2}[/tex]

Substitute known coordinates:

[tex]-2=\dfrac{1+x}{2}\Rightarrow 1+x=-4,\ \ x=-5\\ \\-3=\dfrac{2+y}{2}\Rightarrow 2+y=-6,\ \ y=-8[/tex]

So, point F has coordinates (-5,-8)