When the height of a cylinder is 12 cm and the radius is 4 cm, the circumference of the cylinder is increasing at a rate of π 4 cm/min, and the height of the cylinder is increasing four times faster than the radius. How fast is the volume of the cylinder changing?

Respuesta :

Answer:

[tex]80\pi^4 cm^3/min[/tex]

Step-by-step explanation:

We are given that

Height of cylinder=12 cm

Radius of cylinder=4 cm

Circumference of the cylinder increasing at the rate=[tex]\pi^4 cm/min[/tex]

We know that circumference of cylinder=[tex]2\pi r[/tex]

[tex]C=2\pi r[/tex]

Differentiate w.r t time

[tex]\frac{dC}{dt}=2\pi \frac{dr}{dt}[/tex]

[tex]\pi^4=2\pi \frac{dr}{dt}[/tex]

[tex]\frac{dr}{dt}=\frac{\pi^3}{2} cm/min[/tex]

[tex]\frac{dh}{dt}=4\frac{dr}{dt}=4(\frac{\pi^3}{2})=2\pi^3 cm/min[/tex]

Volume of cylinder,V=[tex]\pi r^2 h[/tex]

Differentiate w.r.t.time

[tex]\frac{dV}{dt}=2\pi rh\frac{dr}{dt}+\pi r^2\frac{dh}{dt}[/tex]

[tex]\frac{dV}{dt}=2\pi (4)(12)(\frac{\pi^3}{2})+\pi (4)^2(2\pi^3)[/tex]

[tex]\frac{dV}{dt}=48\pi^4+32\pi^4[/tex]

[tex]\frac{dV}{dt}=80 \pi^4 cm^3/min[/tex]

Hence, the volume of the cylinder changing at the rate=[tex]80\pi^4 cm^3/min[/tex]