The rate of decomposition of N2O5 in CCl4 at 317 K has been studied by monitoring the concentration of N2O5 in the solution. 2 N2O5(g) → 4 NO2(g) + O2(g) Initially the concentration of N2O5 is 2.36 M. At 177 minutes, the concentration of N2O5 is reduced to 2.16 M. Calculate the average rate of this reaction in M/min.

Respuesta :

Answer:

Average rate of reaction is 0.000565 M/min

Explanation:

Applying law of mass action for the given reaction:

Average rate = [tex]-\frac{1}{2}\frac{[N_{2}O_{5}]}{\Delta t}=\frac{1}{4}\frac{\Delta [NO_{2}]}{\Delta t}=\frac{\Delta [O_{2}]}{\Delta t}[/tex]

Where, [tex]-\frac{1}{2}\frac{[N_{2}O_{5}]}{\Delta t}[/tex] represents average rate of disappearance of [tex]N_{2}O_{5}[/tex], [tex]\frac{1}{4}\frac{[NO_{2}]}{\Delta t}[/tex] represents average rate of appearance of [tex]NO_{2}[/tex] and [tex]\frac{[O_{2}]}{\Delta t}[/tex] represents average rate of appearance of [tex]O_{2}[/tex]

Here,[tex]-\frac{[N_{2}O_{5}]}{\Delta t}[/tex] = [tex]-\frac{(2.16-2.36)}{(177-0)}M/min=0.00113M/min[/tex]

So average rate of reaction = [tex][tex]-\frac{1}{2}\frac{[N_{2}O_{5}]}{\Delta t}[/tex][/tex] = [tex]\frac{1}{2}\times (0.00113M/min)=0.000565M/min[/tex]