Answer:
IRR is within range (17.48%, 22.99%)
Explanation:
[tex]NPV = -5,000,000+\frac{1,000,000}{(1+IRR)^{1} }+\frac{1,500,000}{(1+IRR)^{2} }+\frac{2,000,000}{(1+IRR)^{3} }+\frac{2,000,000}{(1+IRR)^{4} }+\frac{2,000,000}{(1+IRR)^{5} }[/tex]
Approximation by defect:
Be
[tex]CF = 1,000,000 + 1,500,000 + 2,000,000 + 2,000,000 + 2,000,000 = 8,500,000[/tex]
[tex]INV = 5,000,000[/tex]
[tex]XCF = 1x1,000,000+2x1,500,000+3x2,000,000+4x2,000,000+5x2,000,000=1,000,000 + 3,000,000+6,000,000+8,000,000+10,000,000=28,000,000[/tex]
[tex]IRR = (\frac{CF}{INV})^{\frac{CF}{XCF} } -1[/tex]
[tex]IRR = (\frac{8,500,000}{5,000,000})^{\frac{8,500,000}{28,000,000} }-1[/tex]
[tex]IRR = (1.7)^{0.30357 }-1= 1.17478-1 = 0.17478[/tex]
IRR = 17.48%
Approximation by excess:
Be
[tex]CF = 1,000,000 + 1,500,000 + 2,000,000 + 2,000,000 + 2,000,000 = 8,500,000[/tex]
[tex]INV = 5,000,000[/tex]
[tex]YCF = 1,000,000/1+1,500,000/2+2,000,000/3+2,000,000/4+2,000,000/5=1,000,000+750,000+666,667+500,000+400,000=3,316,667[/tex]
[tex]IRR = (\frac{CF}{INV})^{\frac{YFC}{CF} } -1[/tex]
[tex]IRR = (\frac{8,500,000}{5,000,000})^{\frac{3,316,667}{8,500,000} } -1[/tex]
[tex]IRR = (1.7)^{0.39} -1=1.2299-1=0.2299[/tex]
IRR = 22.99%
Then,
17.48%<IRR<22.99%
Hope this helps!