Respuesta :
Answer:
[tex]Ep_x = 288.97*10^3\frac{N}{C}[/tex]
[tex]Ep_y = 2770.6*10^3\frac{N}{C}[/tex]
Explanation:
Conceptual analysis
The electric field at a point P due to a point charge is calculated as follows:
E = k*q/r²
E: Electric field in N/C
q: charge in Newtons (N)
k: electric constant in N*m²/C²
r: distance from charge q to point P in meters (m)
The electric field at a point P due to several point charges is the vector sum of the electric field due to individual charges.
Equivalences
1nC= 10⁻⁹ C
1cm= 10⁻² m
Graphic attached
The attached graph shows the field due to the charges:
Ep₁: Total field at point P due to charge q₁. As the charge is positive ,the field leaves the charge.
Ep₂: Total field at point P due to charge q₂. As the charge is negative, the field enters the charge.
Known data
q₁ = 63 nC = 63×10⁻⁹ C
q₂ = -47 nC = -47×10⁻⁹ C
k = 8.99*10⁹ N×m²/C²
d₁ = 1.4cm = 1.4×10⁻² m
d₂ = 3.4cm = 3.4×10⁻² m
Calculation of r and β
[tex]r=\sqrt{d_1^2 + d_2^2} = \sqrt{(1.4*10^{-2})^2 + (3.4*10^{-2})^2} = 3.677*10^{-2}m[/tex]
[tex]\beta = tan^{-1}(\frac{d_1}{d_2}) = tan^{-1}(\frac{1.4}{3.4}) = 22.38^o[/tex]
Problem development
Ep: Total field at point P due to charges q₁ and q₂.
[tex]Ep = Ep_x i + Ep_y j[/tex]
Ep₁ₓ = 0
[tex]Ep_{2x}=\frac{-k*q_2*Cos\beta}{r^2}=\frac{8.99*10^9*47*10^{-9}*Cos(22.38)}{(3.677*10^{-2})^2}=288.97*10^3\frac{N}{C}[/tex]
[tex]Ep_{1y}=\frac{-k*q_1}{d_1^2}=\frac{8.99*10^9*63*10^{-9}}{(1.4*10^{-2})^2}=2889.6*10^3\frac{N}{C}[/tex]
[tex]Ep_{2y}=\frac{-k*q_2*Sen\beta}{r^2}=\frac{-8.99*10^9*47*10^{-9}*Sen(22.38)}{(3.677*10^{-2})^2}=-119*10^3\frac{N}{C}[/tex]
Calculation of the electric field components at point P
[tex]Ep_x = Ep_{1x} + Ep_{2x} = 0 + 288.97*10^3 = 288.97*10^3\frac{N}{C}[/tex]
[tex]Ep_y = Ep_{1y} + Ep_{2y} = 2889.6*10^3 - 119*10^3 = 2770.6*10^3\frac{N}{C}[/tex]
