What is the probability that each of the following pairs of parents will produce the indicated offspring? (Assume independent assortment of all gene pairs.)
(a) AABBCC × aabbcc->AaBbCc
(b) AABbCc × AaBbCc->AAbbCC
(c) AaBbCc × AaBbCc->AaBbCc
(d) aaBbCC × AABbcc->AaBbCc

Respuesta :

Riia

Answer:

(a) AABBCC × aabbcc->AaBbCc     → 1

(b) AABbCc × AaBbCc->AAbbCC   → 1/32

(c) AaBbCc × AaBbCc->AaBbCc     → 1/8

(d) aaBbCC × AABbcc->AaBbCc    → 1/2

Explanation:

In such cases we calculate the probability of each allelic pair separately.

(a) AABBCC × aabbcc -> AaBbCc  

Aa  Aa   Aa  Aa           Bb  Bb  Bb  Bb         Cc  Cc  Cc  Cc

↓                                   ↓                                ↓  

4/4 = 1                          4/4 = 1                       4/4 = 1    

In case of gene A, out of the 4 probable allelic combinations, 4 will be Aa so the probability is 4/4 = 1.

In case of gene B, out of the 4 probable allelic combinations, 4 will be Bb so the probability is 4/4 = 1.

In case of gene C, out of the 4 probable allelic combinations, 4 will be Cc so the probability is 4/4 = 1.

So, the total probability of getting AaBbCc   = 1 x 1 x 1 = 1.                

(b) AABbCc × AaBbCc -> AA bb CC

AA  AA   Aa  Aa           BB  Bb  Bb  bb         CC  Cc  Cc  cc

↓                                                        ↓           ↓  

2/4                                                    1/4          1/4

In case of gene A, out of the 4 probable allelic combinations, 2 will be AA so the probability is 2/4.

In case of gene B, out of the 4 probable allelic combinations, 1 will be bb so the probability is 1/4.

In case of gene C, out of the 4 probable allelic combinations, 1 will be CC so the probability is 1/4.

So, the total probability of getting AA bb CC = 2/4 x 1/4 x 1/4 = 1/32.

(c) AaBbCc × AaBbCc -> AaBbCc

AA  Aa   Aa  aa           BB  Bb  Bb  bb         CC  Cc  Cc  cc

        ↓                                  ↓                               ↓  

       2/4                               2/4                           2/4

In case of gene A, out of the 4 probable allelic combinations, 2 will be Aa so the probability is 2/4.

In case of gene B, out of the 4 probable allelic combinations, 2 will be Bb so the probability is 2/4.

In case of gene C, out of the 4 probable allelic combinations, 2 will be Cc so the probability is 2/4.

So, the total probability of getting AaBbCc = 2/4 x 2/4 x 2/4 = 1/8.

(d) aaBbCC × AABbcc->AaBbCc

Aa  Aa   Aa  Aa               BB  Bb  Bb  bb          Cc  Cc  Cc  Cc

      ↓                                        ↓                                ↓  

4/4 = 1                                       2/4                          4/4 = 1    

In case of gene A, out of the 4 probable allelic combinations, 4 will be Aa so the probability is 4/4 = 1.

In case of gene B, out of the 4 probable allelic combinations, 2 will be Bb so the probability is 2/4.

In case of gene C, out of the 4 probable allelic combinations, 4 will be Cc so the probability is 4/4 = 1.

So, the total probability of getting AaBbCc = 1 x 2/4 x 1 = 1/2.

a. The probability for a cross of AABBCC × aabbcc to produce AaBbCc is: 1.

b. The probability for a cross of AABbCc × AaBbCc to produce AAbbCC is: [tex]\frac{1}{32}[/tex]

c. The probability for a cross of AaBbCc × AaBbCc to produce AaBbCc is: [tex]\frac{1}{8}[/tex]

d. The probability for a cross of aaBbCC × AABbcc to produce AaBbCc is: [tex]\frac{1}{2}[/tex]

Recall:

  • The Principle of Independent Assortment of genes holds that genes will separate from each one another independently during development of reproductive cell.
  • A Punnett Square can be used to show the offspring that will be produced during a cross between two parents.

Thus, the images below shows the various outcome of each cross.

a. Figure A shows the cross between:

AABBCC × aabbcc

The genotype of all offspring produced are only AaBbCc.

Therefore, the probability for a cross of AABBCC × aabbcc to produce AaBbCc is: 1.

b. Figure B shows the cross between:

AABbCc × AaBbCc

From the cross, there are only 2 AAbbCC out of 64 offspring produced.

  • That is: [tex]\frac{2}{64} = \frac{1}{32}[/tex]

Therefore, the probability for a cross of AABbCc × AaBbCc to produce AAbbCC is: [tex]\frac{1}{32}[/tex]

c. Figure C shows the cross between:

AaBbCc × AaBbCc

From the cross, there are only 8 AaBbCc out of 64 offspring produced.

  • That is: [tex]\frac{8}{64} = \frac{1}{8}[/tex]

Therefore, the probability for a cross of AaBbCc × AaBbCc to produce AaBbCc is: [tex]\frac{1}{8}[/tex]

d. Figure D shows the cross between:

aaBbCC × AABbcc

From the cross, there are only 32 AaBbCc out of 64 offspring produced.

  • That is: [tex]\frac{32}{64} = \frac{1}{2}[/tex]

Therefore, the probability for a cross of aaBbCC × AABbcc to produce AaBbCc is: [tex]\frac{1}{2}[/tex]

Learn more here:

https://brainly.com/question/14894287

Ver imagen akposevictor
Ver imagen akposevictor
Ver imagen akposevictor
Ver imagen akposevictor