Answer:
a). L= meters, g= [tex]\frac{m}{s^{2} }[/tex]
b). L= 5cm T=0.448
L= 10 m T=6.34
c). Constant= [tex]\frac{2*\pi }{\sqrt{g} }=\frac{2*\pi }{\sqrt{9.8} }=2.007089923[/tex]
Explanation:
a).
[tex]T= 2*\pi \sqrt{\frac{L}{g} } = 2*\pi \sqrt{\frac{m}{\frac{m}{s^{2} } } } \\T= 2*\pi \sqrt{\frac{s^{2}*m }{m} }=2*\pi \sqrt{s^{2} } \\T= s[/tex]
b).
[tex]L_{1}= 5 cm[/tex], [tex]5cm *\frac{1m}{100 cm} = 0.05 m[/tex]
[tex]T=2*\pi \sqrt{\frac{L}{g} }[/tex]
[tex]T=2*\pi \sqrt{\frac{0.05}{9.8} }= 0.448[/tex]s
[tex]L_{1}= 10 m[/tex]
[tex]T=2*\pi \sqrt{\frac{L}{g} }[/tex]
[tex]T=2*\pi \sqrt{\frac{10}{9.8} }= 6.43[/tex]s
c).
[tex]g= 9.8 \frac{m}{s^{2} }[/tex]
[tex]T=2*\pi *\frac{\sqrt{L} }{\sqrt{g} } =T=2*\pi *\frac{\sqrt{L} }{\sqrt{9.8} } \\T= 2*\pi \frac{1}{\sqrt{9.8}} *\sqrt{L}\\T= 2.007089923*\sqrt{L}[/tex]