What is the percent by mass of oxygen in a gaseous mixture whose molar composition is 0.500 % CO2 and 99.500% air? The composition of air is 21% mole O2, 79 % mole N2 , and has an average molar mass of 29.0 g/mol Number % O by mass

Respuesta :

Answer:

23.0 %

Explanation:

Let the gaseous mixture has total 100 moles

Composition of [tex]CO_2[/tex] = 0.500 %

The moles of [tex]CO_2[/tex] = [tex]\frac {0.500}{100}\times 100\ moles[/tex] = 0.5 moles

Also,

Molar mass of carbon dioxide = 44.01 g/mol

The formula for the calculation of moles is shown below:

[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]

Thus,

[tex]0.5\ moles= \frac{Mass}{44.01\ g/mol}[/tex]

Mass of [tex]CO_2[/tex] = 22.005 g

Composition of air = 99.500 %

The moles of air = [tex]\frac {99.500}{100}\times 100\ moles[/tex] = 99.500 moles

Also,

Given, Average molar mass of air = 29.0 g/mol

The formula for the calculation of moles is shown below:

[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]

Thus,

[tex]99.5\ moles= \frac{Mass}{29.0\ g/mol}[/tex]

Mass of air = 2885.5 g

Total mass  of 100 moles of the mixture = 22.005 g + 2885.5 g = 2907.505 g

Composition of [tex]O_2[/tex] = 21 % of air

The moles of [tex]O_2[/tex] = [tex]\frac {21}{100}\times 99.5\ moles[/tex] = 20.895 moles

Also,

Molar mass of oxygen =  31.9988 g/mol

The formula for the calculation of moles is shown below:

[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]

Thus,

[tex]20.895\ moles= \frac{Mass}{ 31.9988\ g/mol}[/tex]

Mass of [tex]O_2[/tex] = 668.615 g

Thus,

% O by mass = [tex]\frac {Mass\ of\ Oxygen}{Total\ mass}\times 100=\frac {668.615}{2907.505}\times 100[/tex] = 23.0 %