An aqueous solution of sodium hydroxide contains 15% NaOH by mass. It is desired to produce an 5% NaOH solution by diluting a stream of the 15% solution with a stream of pure water. Calculate the following: A) The ratios (g H,O/g feed solution) and (g product / g feed solution). B) Determine the feed rates of 15% solution and diluting water needed to produce 2500 Ib./min of the 5% solution.

Respuesta :

Answer:

feed rate of 15% sol =  f = 833.33 lb/min

Diluting water w = 1666.6 lb/min

Explanation:

Assume feed solution of 100 gm

a) considering mass balanced

Total mass in = total mass out

feed + pure water = product

100 + w = P

P- w = 100 ...........1

mass balanced for NaOH

Total NaOH in = total NaOH out

f +w = NaOH in P

[tex]\frac{15}{100} \times f + 0 = \frac{5}{100} \times P[/tex]

[tex]\frac{15}{100} \times 100 = \frac{5}{100} \times P[/tex]

P = 300 g/min

putting P value in 1 eq

w get w = 200 g/min

hence,

[tex]\frac{g\ pure\ water}{g\ feed\ solution} = \frac{w}{f} = \frac{200}{100} = 2[/tex]

[tex]\frac{g\ product}{g\ feed\ solution} = \frac{P}{f} = \frac{300}{100} = 3[/tex]

b)  it is given 5% solution p = 2500 lb/min

[tex]\frac{P}{f} = 3[/tex]

[tex]F = \frac{P}{3} = \frac{2500}{3} = 833.33 lb/min[/tex]

[tex]\frac{w}{f} = 2[/tex]

[tex]w = 2\times 833.33 = 1666.66 lb/min[/tex]

feed rate of 15% sol =  f = 833.33 lb/min

Diluting water w = 1666.6 lb/min

Explanation:

We will assume that the flow rate of feed (F) = 100 g/min

(a)  The overall mass balance will be as follows.

           Total mass IN = Total mass OUT

as,          Feed + Pure water = Product

                100 + W = P

or,                P - W = 100 .......... (1)

Whereas NaOH mass balance will be as follows.

            Total NaOH mass IN = Total NaOH OUT

         NaOH in feed + NaOH in water = NaOH in product

          [tex]\frac{20}{100} \times F + 0 = \frac{8}{100} \times 100[/tex]

                     P = [tex]\frac{20}{100} \times 100 \times \frac{100}{8}[/tex]

                         = 250 g/min

Now, we will put the value of P in equation (1) as follows.

                           P - W = 100

                          250 - W = 100

                          W = 250 - 100

                               = 150 g/min

Therefore,  [tex]\frac{\text{grams of pure water}}{\text{grams feed solution}}[/tex] = [tex]\frac{W}{F}[/tex]

                            = [tex]\frac{150}{100}[/tex]

                            = 1.5

      [tex]\frac{\text{grams of product}}{\text{grams feed solution}}[/tex] = [tex]\frac{P}{F}[/tex]

                            = [tex]\frac{250}{100}[/tex]

                            = 2.5

(b)   As it is given that 8% solution (P) = 2400 lb/min.

As it is calculated that the ratio of P and F ([tex]\frac{P}{F}[/tex]) = 2.5

So,          F = [tex]\frac{P}{2.5}[/tex]

                 = [tex]\frac{2400}{2.5}[/tex]

                 = 960 lb/min

Also,       [tex]\frac{W}{F}[/tex] = 1.5

                      W = [tex]1.5 \times F[/tex]

                          = [tex]1.5 \times 960[/tex]

                          = 1440 lb/min

Therefore, we can conclude that the feed rate of 20% solution = F = 960 lb/min.

When diluted with water then W = 1440 lb/min.