Solve the following equations.
20. x/4 + 10 = 3/4
21. 12 = |x + 8|
22. -3|x - 4| + 2 = -7
23. 16(x – 2) – (x – 3) = 29
24.5/6(2x – 8) = 45
25. F = 9/5C + 32 Solve for C.

Respuesta :

20

Start with

[tex]\dfrac{x}{4} + 10 = \dfrac{3}{4}[/tex]

Multiply both sides by 4:

[tex]x+40=3[/tex]

Subtract 40 from both sides:

[tex]x = -37[/tex]

21

If the absolute value of something equals 12, then that something is either 12 or -12: the possibilities are

[tex]x+8=12 \iff x=4[/tex]

or

[tex]x+8=-12 \iff x=-20[/tex]

22

You can isolate the absolute value

[tex]-3|x-4|+2=-7 \iff -3|x - 4|=-9 \iff |x - 4|=3[/tex]

And proceed as before.

23

Distribute the 16:

[tex]16x-32-x+3=29 \iff 15x-29=29 \iff 15x=58 \iff x = \dfrac{58}{15}[/tex]

24

Multiply both sides by 6/5:

[tex]2x-8=54 \iff 2x=62 \iff x=31[/tex]

25

Start with

[tex]F=\dfrac{9}{5}C+32[/tex]

Subtract 32 from both sides

[tex]F-32=\dfrac{9}{5}C[/tex]

Multiply both sides by 5/9

[tex]\dfrac{5}{9}(F-32)=C[/tex]

aber15
Fy 34 hfytyugsfhvjvuvuvugu