Consider the hydrogen atom as described by the Bohr model. The nucleus of the hydrogen atom is a single proton. The electron rotates in a circular orbit about this nucleus. In the n = 5, orbit the electron is 1.32 10-9 m from the nucleus and it rotates with an angular speed of 3.30 1014 rad/s. Determine the electron's centripetal acceleration in m/s2.

Respuesta :

Explanation:

It is given that the atom is hydrogen. And, its electron rotates in n = 5 orbit with angular speed [tex]3.3 \times 10^{14} rad/s[/tex].

Radius of circular path = [tex]1.32 \times 10^{-9}[/tex] m

Hence, first calculate the tangential speed as follows.

          Tangential speed = radius × angular speed

                                        = [tex]4.356 \times 10^{5} m/s[/tex]

As formula to calculate time period is as follows.

                  T = [tex]1.5211 \times 10^{-16} \times \frac{n^{3}}{z^{2}}[/tex] sec

Also,     frequency [tex](\nu)[/tex] = [tex]\frac{1}{T}[/tex]

So, for n = 5 and z = 1 the value of frequency is as follows.

             frequency [tex](\nu)[/tex] = [tex]\frac{1}{1.5211 \times 10^{-16}} \times \frac{z^{2}}{n^{3}}[/tex]

                                   = [tex]\frac{1}{1.5211 \times 10^{-16}} \times \frac{1}{(5)^{3}}[/tex]  

                                   = [tex]5.259 \times 10^{13}[/tex] Hz

As formula to calculate centripetal acceleration is as follows.

                  [tex]a_{c} = \frac{v^{2}}{r}[/tex]

where,           v = linear speed

                      r = radius

                v = [tex]2.165 \times 10^{6} \times \frac{z}{n}[/tex]

                   = [tex]2.165 \times 10^{6} \times \frac{1}{5}[/tex]      

                   = [tex]4.3 \times 10^{5} m/s[/tex]            

Hence, the centripetal acceleration will be as follows.

                 [tex]a_{c} = \frac{v^{2}}{r}[/tex]

                            = [tex]\frac{(4.3 \times 10^{5})^{2}}{1.32 \times 10^{-9}}[/tex]

                            = [tex]1.4 \times 10^{20} m/s^{2}[/tex]

Thus, we can conclude that the electron's centripetal acceleration is [tex]1.4 \times 10^{20} m/s^{2}[/tex].