Respuesta :
[tex]2(x^2+y^2)^2=25(x^2-y^2)[/tex]
Let [tex]y=y(x)[/tex], so that differentiating both sides wrt [tex]x[/tex] gives
[tex]4(x^2+y^2)\left(2x+2y\dfrac{\mathrm dy}{\mathrm dx}\right)=25\left(2x-2y\dfrac{\mathrm dy}{\mathrm dx}\right)[/tex]
If [tex]x=-3[/tex] and [tex]y=1[/tex], the above reduces to
[tex]40\left(-6+2\dfrac{\mathrm dy}{\mathrm dx}\right)=25\left(-6-2\dfrac{\mathrm dy}{\mathrm dx}\right)\implies\dfrac{\mathrm dy}{\mathrm dx}=\dfrac9{13}[/tex]
This is the slope of the tangent line, which has equation
[tex]y-1=\dfrac9{13}(x+3)\implies\boxed{y=\dfrac{9x+40}{13}}[/tex]

The equation of the tangent line to the curve is expressed as [tex]y-1= 1/5(x+3)[/tex]
The formula for calculating the equation of a line in point-slope form is expressed as y-y0 = m(x-x0)
m is the slope
(x0, y0) is the point on the line
Given the equation [tex]2(x^2+y^2)^2=25(x^2-y^2)[/tex]
To get the required slope, we will need to differentiate the equation implicitly with respect to x as shown:
[tex]4(x^2+y^2)*2x+2y\frac{dy}{dx}=25(2x-2y\frac{dy}{dx} ) \\\ 4(x^2+y^2)*2x+2y\frac{dy}{dx}}=50x-50y\frac{dy}{dx}[/tex]
Substituting the coordinate point (-3, 1)
[tex]4(9+1)*(-6)+2\frac{dy}{dx}}=50(-3)-50\frac{dy}{dx}\\40-12\frac{dy}{dx}=-150-50 \frac{dy}{dx}\\190=-38\frac{dy}{dx}\\ \frac{dy}{dx}=-\frac{1}{5}[/tex]
Write the expression in point slope form:
[tex]y-1= 1/5(x+3)[/tex]
Hence the equation of the tangent line to the curve is expressed as [tex]y-1= 1/5(x+3)[/tex]
Learn more here: https://brainly.com/question/6617153