Determine whether each of the following functions is a solution of Laplace's equation uxx + uyy = 0. (Select all that apply.) u = e^(−x) cos(y) − e^(−y) cos(x) u = sin(x) cosh(y) + cos(x) sinh(y)

Respuesta :

Answer with Step-by-step explanation:

We are given that Laplace's equation

[tex]u_{xx}+u_{yy}=0[/tex]

We have to determine given function is  solution of given laplace's equation.

If a  function is solution of given Laplace's  equation then  it satisfy the solution.

1.[tex]u=e^{-x}cosy-e^{-y}cosx[/tex]

Differentiate w.r.t x

Then, we get

[tex]u_x=-e^{-x}cosy+e^{-y}sinx[/tex]

Again differentiate w.r.t x

[tex]u_{xx}=e^{-x}cosy+e^{-y}cosx[/tex]

Now differentiate u w.r.t y

[tex]u_y=-e^{-x}siny+e^{-y}cosx[/tex]

Again differentiate w.r.t y

[tex]u_{yy}=-e^{-x}cosy-e^{-y}cosx[/tex]

Substitute the values in given Laplace's equation

[tex]e^{-x}cosy+e^{-y}cosx-e^{-x}cosy-e^{-y}cosx=0[/tex]

Hence, given function is a solution of given Laplace's equation.

2.[tex]u=sinx coshy+cosx sinhy[/tex]

Differentiate w.r.t x

[tex]u_x=cosx coshy-sinx sinhy[/tex]

Again differentiate w.r.t x

[tex]u_{xx}=-sin x coshy-cosxsinhy[/tex]

Now, differentiate u w.r.t y

[tex]u_y=sinx sinhy+cosx coshy[/tex]

Again differentiate w.r.t y

[tex]u_{yy}=sinx coshy+cosx sinhy[/tex]

Substitute the values then we get

[tex]-sinx coshy-cosxsinhy+sinxcoshy+cosx sinhy=0[/tex]

Hence, given function is a solution of given Laplace's equation.