Answer:
Step-by-step explanation:
Given
First they travel 7 km east , then they go 8 km in direction 60^{\circ} north of east
Position vector of first point
[tex]r_1=7\hat{i}[/tex]
[tex]r_{21}=8cos60\hat{i}+8sin60\hat{j}[/tex]
[tex]r_{21}=4\hat{i}+6.92\hat{j}[/tex]
Position vector of [tex]r_2[/tex] w.r.t to origin
[tex]r_2=r_{21}+r_1[/tex]
[tex]r_2=4\hat{i}+6.92\hat{j}+7\hat{i}[/tex]
[tex]r_2=11\hat{i}+6.92\hat{j}[/tex]
magnitude of [tex]r_2[/tex] will give the distance they are from original point
[tex]|r_2|=\sqrt{6.92^2+11^2}=13[/tex]
direction
[tex]tan\theta =\frac{y}{x}=\frac{6.92}{11}[/tex]
[tex]\theta =32.17^{\circ}[/tex] North of east