Answer:
[tex]Diffusion\ coefficient = 5.848\times 10^{-10} m^2/s[/tex]
Explanation:
convert the carbon concentration from weight percent to kilogram carbon per meter cubed for 0.010%
[tex]C_A = \frac{C_c}{\frac{C_c}{\rho_c} + \frac{C_b}{\rho_b}} \times 10^3[/tex]
where, [tex]C_c[/tex] is carbon concentration 0.010
[tex] C_b [/tex]is remaining BCC concentration ( 100 - 0.010 = 99.99)
where [tex]\rho_c and \rho_b[/tex] is density of carbon and bcc respectively
[tex]C_A = \frac{0.010}{\frac{0.010}{2.25} + \frac{99.99}{7.87}} \times 10^3[/tex]
[tex]C_A =0.786[/tex]
convert the carbon concentration from weight percent to kilogram carbon per meter cubed for 0.0063%
[tex]C_B = \frac{C_c}{\frac{C_c}{\rho_c} + \frac{C_b}{\rho_b}} \times 10^3[/tex]
where,[tex] C_c[/tex] is carbon concentration 0.010
[tex] C_b [/tex]is remaining BCC concentration ( 100 - 0.0063 = 99.993)
where [tex]\rho_c and \rho_b[/tex] is density of carbon and bcc respectively
[tex]C_B = \frac{0.0063}{\frac{0.0063}{2.25} + \frac{99.99}{7.87}} \times 10^3[/tex]
[tex]C_B =0.495[/tex]
Determine Diffusion coefficient
[tex]D = -J [\frac{X_A -X_B}{C_A - C_B}][/tex]
[tex]= -3.7\times 10^{-8} [\frac{-4.6\times 10^{-3}}{0.786-0.495}][/tex]
[tex]Diffusion\ coefficient = 5.848\times 10^{-10} m^2/s[/tex]