Respuesta :

Answer:

[tex]f_x(x,y)=6x^{5}+9y^5[/tex]

[tex]f_y(x,y)=45xy^{4}[/tex]

Step-by-step explanation:

Given : Function [tex]f(x,y)=x^6+9xy^5[/tex]

To find : The first partial derivatives of the function fx(x, y) and fy(x, y) ?

Solution :

Function [tex]f(x,y)=x^6+9xy^5[/tex]

Partial derivative w.r.t to x means y treat as constant,

[tex]f_x(x,y)=6x^{6-1}+9\times 1x^{1-1}y^5[/tex]

[tex]f_x(x,y)=6x^{5}+9x^{0}y^5[/tex]

[tex]f_x(x,y)=6x^{5}+9y^5[/tex]

Partial derivative w.r.t to y means x treat as constant,

[tex]f_y(x,y)=0+9\times 5xy^{5-1}[/tex] (Derivative of constant is zero)

[tex]f_y(x,y)=45xy^{4}[/tex]