The force F on an object is the product of the mass m and the acceleration a. In this problem, assume that the mass and acceleration both depend on time t, hence so the does the force. That is, F(t)=m(t)a(t) At time t=7 seconds, the mass of an object is 49 grams and changing at a rate of −1gs. At this same time, the acceleration is 11ms2 and changing at a rate of −10ms3. By the product rule, the force on the object is changing at the rate of .

Respuesta :

Answer:[tex]-501\times 10^{-3} N/s[/tex]

Explanation:

Given

[tex]F\left ( t\right )=m\left ( t\right )a\left ( t\right )[/tex]

at t=7 s

m=49 gm

[tex]\frac{\mathrm{d} m}{\mathrm{d} t}=-1 gm/s[/tex]

[tex]a=11 m/s^2[/tex]

[tex]\frac{\mathrm{d} a}{\mathrm{d} t}=-10 m/s^3[/tex]

Differentiating Force

[tex]\frac{\mathrm{d} F(t)}{\mathrm{d} t}=\frac{\mathrm{d} m}{\mathrm{d} t}a+\frac{\mathrm{d} a}{\mathrm{d} t}m[/tex]

[tex]\frac{\mathrm{d} F(t)}{\mathrm{d} t}=-1\times 11-10\times 49=-11-490=-501\times 10^{-3} N/s[/tex]

Answer:

[tex]\frac{dF}{dt} = -0.501\,\frac{N}{s}[/tex]

Explanation:

The rate of change of the force is:

[tex]\frac{dF}{dt} = \frac{dm}{dt}\cdot a(t) + m(t) \cdot \frac{da}{dt}[/tex]

[tex]\frac{dF}{dt} = (-1\times 10^{-3}\,\frac{kg}{s} )\cdot (11\,\frac{m}{s^{2}}) + (0.049\,kg)\cdot (-10\,\frac{m}{s^{3}} )[/tex]

[tex]\frac{dF}{dt} = -0.501\,\frac{N}{s}[/tex]