Respuesta :

Answer:

Part 4) k=1/2

Part 5) k=-2/3

Part 6) y=32

Part 7) x=6

Part 8) v=99

Part 9)b=6

Part 10) y=6

Step-by-step explanation:

we know that

A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form [tex]y/x=k[/tex] or [tex]y=kx[/tex]

In a proportional relationship the constant of proportionality k is equal to the slope m of the line and the line passes through the origin

Part 4) Find the value of the constant of proportionality k

we have

[tex]y=\frac{1}{2}x[/tex]

Remember that the value of k is the same that the value of the slope

[tex]m=\frac{1}{2}[/tex]

so

[tex]k=\frac{1}{2}[/tex]

Part 5) Find the value of the constant of proportionality k

we have

[tex]y=-\frac{2}{3}x[/tex]

Remember that the value of k is the same that the value of the slope

[tex]m=-\frac{2}{3}[/tex]

so

[tex]k=-\frac{2}{3}[/tex]

Part 6) Suppose that y varies directly with x, and y=16 when x=8. Find y  when x=16

step 1

Find the value of the constant of proportionality k

[tex]k=y/x[/tex]

[tex]k=16/8=2[/tex]

step 2

Find the equation of the direct variation

[tex]y=kx[/tex]

substitute the value of k

[tex]y=2x[/tex]

step 3

Find y  when x=16

[tex]y=2(16)=32[/tex]

Part 7) Suppose that y varies directly with x, and y=21 when x=3. Find x  when y=42

step 1

Find the value of the constant of proportionality k

[tex]k=y/x[/tex]

[tex]k=21/3=7[/tex]

step 2

Find the equation of the direct variation

[tex]y=kx[/tex]

substitute the value of k

[tex]y=7x[/tex]

step 3

Find x  when y=42

[tex]42=7x[/tex]

solve for x

[tex]x=42/7[/tex]

[tex]x=6[/tex]

Part 8) Suppose that v varies directly with g, and v=36 when g=4. Find v  when g=11

step 1

Find the value of the constant of proportionality k

[tex]k=v/g[/tex]

[tex]k=36/4=9[/tex]

step 2

Find the equation of the direct variation

[tex]v=kg[/tex]

substitute the value of k

[tex]v=9g[/tex]

step 3

Find v  when g=11

[tex]v=9(11)=99[/tex]

Part 9) Suppose that a varies directly with a, and a=7 when b=2. Find b  when a=21

step 1

Find the value of the constant of proportionality k

[tex]k=a/b[/tex]

[tex]k=7/2=3.5[/tex]

step 2

Find the equation of the direct variation

[tex]a=kb[/tex]

substitute the value of k

[tex]a=3.5b[/tex]

step 3

Find b  when a=21

[tex]21=3.5b[/tex]

solve for b

[tex]b=21/3.5[/tex]

[tex]b=6[/tex]

Part 10) Suppose that y varies directly with x, and y=9 when x=3/2. Find y  when x=1

step 1

Find the value of the constant of proportionality k

[tex]k=y/x[/tex]

[tex]k=9/(3/2)=6[/tex]

step 2

Find the equation of the direct variation

[tex]y=kx[/tex]

substitute the value of k

[tex]y=6x[/tex]

step 3

Find y  when x=1

[tex]y=6(1)=6[/tex]