A standard solution of FeSCN2+ is prepared by combining 9.0 mL of 0.20 M Fe(NO3)3 with 1.0 mL of 0.0020 M KSCN . The standard solution had an absorbance of 0.480 . Fe3+(aq)+SCN−(aq)↽−−⇀FeSCN2+(aq) A trial solution was made in a similar manner, but with a more dilute Fe(NO3)3 reagent. The initial SCN− concentration, immediately after mixing, was 0.00050 M . This trial solution had absorbance of 0.220 . What is the equilibrium concentration of SCN− in the trial solution?

Respuesta :

Answer : The equilibrium concentration of [tex]SCN^-[/tex] in the trial solution is [tex]4.58\times 10^{-8}M[/tex]

Explanation :

First we have to calculate the initial moles of [tex]Fe^{3+}[/tex] and [tex]SCN^-[/tex].

[tex]\text{Moles of }Fe^{3+}=\text{Concentration of }Fe^{3+}\times \text{Volume of solution}[/tex]

[tex]\text{Moles of }Fe^{3+}=0.20M\times 9.0mL=1.8mmol[/tex]

and,

[tex]\text{Moles of }SCN^-=\text{Concentration of }SCN^-\times \text{Volume of solution}[/tex]

[tex]\text{Moles of }SCN^-=0.0020M\times 1.0mL=0.0020mmol[/tex]

The given balanced chemical reaction is,

[tex]Fe^{3+}(aq)+SCN^-(aq)\rightleftharpoons FeSCN^{2+}(aq)[/tex]

Since 1 mole of [tex]Fe^{3+}[/tex] reacts with 1 mole of [tex]SCN^-[/tex] to give 1 mole of [tex]FeSCN^{2+}[/tex]

The limiting reagent is, [tex]SCN^-[/tex]

So, the number of moles of [tex]FeSCN^{2+}[/tex] = 0.0020 mmole

Now we have to calculate the concentration of [tex]FeSCN^{2+}[/tex].

[tex]\text{Concentration of }FeSCN^{2+}=\frac{0.0020mmol}{9.0mL+1.0mL}=0.00020M[/tex]

Using Beer-Lambert's law :

[tex]A=\epsilon \times C\times l[/tex]

where,

A = absorbance of solution

C = concentration of solution

l = path length

[tex]\epsilon[/tex] = molar absorptivity coefficient

[tex]\epsilon[/tex] and l are same for stock solution and dilute solution. So,

[tex]\epsilon l=\frac{A}{C}=\frac{0.480}{0.00020M}=2400M^{-1}[/tex]

For trial solution:

The equilibrium concentration of [tex]SCN^-[/tex] is,

[tex][SCN^-]_{eqm}=[SCN^-]_{initial}-[FeSCN^{2+}][/tex]

[tex][SCN^-]_{initial}[/tex] = 0.00050 M

Now calculate the [tex][FeSCN^{2+}][/tex].

[tex]C=\frac{A}{\epsilon l}=\frac{0.220}{2400M^{-1}}=9.17\times 10^{-5}M[/tex]

Now calculate the concentration of [tex]SCN^-[/tex].

[tex][SCN^-]_{eqm}=[SCN^-]_{initial}-[FeSCN^{2+}][/tex]

[tex][SCN^-]_{eqm}=(0.00050M)-(9.17\times 10^{-5}M)[/tex]

[tex][SCN^-]_{eqm}=4.58\times 10^{-8}M[/tex]

Therefore, the equilibrium concentration of [tex]SCN^-[/tex] in the trial solution is [tex]4.58\times 10^{-8}M[/tex]