Answer:
Part a)
[tex]t_w = \sqrt{\frac{2h}{g}}[/tex]
Part b)
[tex]t_w = 1.32 s[/tex]
Part c)
[tex]d_w = 6.88 m[/tex]
Explanation:
Part a)
As we know that the diver will have zero velocity in vertical direction
so here we can say that
[tex]\Delta y = v_y t + \frac{1}{2}a_y t^2[/tex]
[tex]h = \frac{1}{2}gt^2[/tex]
[tex]t_w = \sqrt{\frac{2h}{g}}[/tex]
Part b)
as we know that
[tex]h = 8.5 m[/tex]
[tex]g = 9.81 m/s^2[/tex]
so we will have
[tex]t_w = \sqrt{\frac{2(8.5)}{9.81}}[/tex]
[tex]t_w = 1.32 s[/tex]
Part c)
Distance covered by diver from the edge of the pool is given as
[tex]d_w = L + v_w t_w[/tex]
[tex]d_w = 2 + (3.7)(1.32)[/tex]
[tex]d_w = 6.88 m[/tex]