Find the equivalent thickness of CO2 on Earth.

Earth’s atmospheric CO2 = 3.2 × 1015 kg

Earth’s radius = 6.4 × 106 m

Molar volume (@STP) = 22.414 L mol-1

Respuesta :

Answer:

h = 9483 m

Explanation:

Assume Re as radius of earth and h as equivalent thickness of co_2

total volume occupied by [tex]co_2 = \frac{4}{3} \pi Re^3 +\frac{4}{3} \pi (Re+ h)^3[/tex]

mass of [tex]co_2 = 3.2 \times 10^{15} kg[/tex]

1 mole of co_2 has  44 g mass

1 g has = 1/44 mole

[tex]3.2 \times 10^{15} kg  has = 1/44 \times 3.2\times 10^{18} = 7.27 \times 10^{16} mole[/tex]

total volume by [tex]co_2 =  7.27 \times 10^{16} \times 22.414 L = 163.01\times 10^{16} L[/tex]

[tex]163.01\times 10^{16} L = frac{4}{3} \pi Re^3 +\frac{4}{3} \pi (Re+ h)^3[/tex]

SOLVING RIGHT SIDE WE GET

[tex]h ( Re^2 +h^2 + Reh)  = \frac{3\times 163.01\times 10^{16}}{4\pi}[/tex]

[tex]h ( Re^2 +h^2 + Reh)  =  \frac{3\times 163.01\times 10^{16}}{4\pi}[/tex]

solving for h we get

h = 9483 m