Respuesta :

Answer:

[tex]9 \sqrt{135}[/tex]

Step-by-step explanation:

Express 135 as a product of 15 and 9:

[tex]135=15*9[/tex]

So:

[tex]3\sqrt{15*9}[/tex]

Now, use the following property:

[tex]\sqrt[n]{a*b} =\sqrt[n]{a}\hspace{3} \sqrt[n]{b}[/tex]

Therefore:

[tex]3\sqrt{15} \sqrt{9}[/tex]

Since the square root of 9 is 3, the simplified form of [tex]3\sqrt{135}[/tex]:

[tex]3\sqrt{15} \sqrt{9}=3*3\sqrt{15} =9\sqrt{15}[/tex]

The simplified from is the form if expression which is obtained by performing mathematical operations to the expression and convert it to its standard form.

Hence, the simplified form of [tex]3\sqrt{135}[/tex] is [tex]9\sqrt{15}[/tex]

Given information:

The given root is [tex]3\sqrt{135}[/tex]

Now we know that:

[tex]135=9\times15[/tex]

And we also know a property that is:

[tex]\sqrt{a\times b} =\sqrt{a} \times \sqrt{b}[/tex]

on applying both the above information:

We get,

[tex]3\sqrt{135} =3\times \sqrt{9\times 15} \\3\sqrt{135} =3\times \sqrt{9} \times\sqrt{15} \\3\sqrt{135} =3\times 3\times \sqrt{15} \\3\sqrt{135} =9\times \sqrt{15}[/tex]

Hence the simplified form of  [tex]3\sqrt{135}[/tex] is  [tex]9\sqrt{15}[/tex].

For more information visit:

https://brainly.com/question/12930065