Respuesta :

Answer:

Part a) The area of the figure is [tex]31\ ft^2[/tex]

Part b) The area of the figure is [tex]46\ ft^2[/tex]

Step-by-step explanation:

Part a) we know that

The area of the figure is equal to the area of rectangle plus the area of trapezoid

step 1

The area of rectangle is

[tex]A_1=(b)(h)[/tex]

we have

[tex]b=8\ ft\\h=2\ ft[/tex]

substitute the given values

[tex]A_1=(8)(2)=16\ ft^2[/tex]

step 2

The area of trapezoid is

[tex]A=\frac{1}{2}(b_1+b_2)(h)[/tex]

we have

[tex]b_1=4\ ft\\b_2=8-(1+1)=6\ ft\\h=3\ ft[/tex]

substitute

[tex]A=\frac{1}{2}(4+6)(3)[/tex]

[tex]A_2=15\ ft^2[/tex]

step 3

Find the area of the figure

[tex]A=A_1+A_2[/tex]

substitute

[tex]A=16+15=31\ ft^2[/tex]

Part b) we know that

The area of the figure is equal to the area of rectangle plus the area of two triangles

step 1

The area of rectangle is

[tex]A_1=(b)(h)[/tex]

substitute the given values

[tex]A_1=(5)(6)=30\ ft^2[/tex]

step 2

The area of triangle at the top is

[tex]A_2=\frac{1}{2}(b)(h)[/tex]

we have

[tex]b=4\ ft\\h=6\ ft[/tex]

substitute

[tex]A_2=\frac{1}{2}(4)(6)[/tex]

[tex]A_2=12\ ft^2[/tex]

step 3

The area of triangle at right is

[tex]A_3=\frac{1}{2}(b)(h)[/tex]

we have

[tex]b=4\ ft\\h=2\ ft[/tex]

substitute

[tex]A_3=\frac{1}{2}(4)(2)[/tex]

[tex]A_3=4\ ft^2[/tex]

step 4

Find the area of the figure

[tex]A=A_1+A_2+A_3[/tex]

substitute

[tex]A=30+12+4=46\ ft^2[/tex]