Respuesta :
Answer:
(A) Mean = 84
(B) Variance = 118.714
(C) Standard deviation = 10.89
Step-by-step explanation:
Data provided:
number of observations, n = 15
sample of 15 costco customer satisfaction scores follow
X [tex]X-\bar{X}[/tex] [tex](X-\bar{X})^2[/tex]
95 11 121
90 6 36
83 -1 1
64 -20 400
95 11 121
98 14 196
80 -4 16
83 -1 1
82 -2 4
93 9 81
86 2 4
80 -4 16
94 10 100
75 -9 81
62 -22 484
================================================
∑X = 1260 ∑= 1662
Now,
(A) Mean = [tex]\frac{\textup{Sum of all observations}}{\textup{Total number of observations}}[/tex]
or
Mean = [tex]\frac{\textup{1260}}{\textup{15}}[/tex] = 84
(B) Variance = [tex]\frac{\sum(X-\bar{X})^2}{n-1}[/tex]
or
Variance = [tex]\frac{1662}{15-1}[/tex]
or
Variance = 118.714
(C) Standard deviation = √Variance = √118.714 = 10.89