Answer:
Part a)
[tex]\theta_2 = 15 degree[/tex]
Part b)
[tex]\Delta t = 2.88 s[/tex]
Explanation:
Part a)
In order to have same range for same initial speed we can say
[tex]R_1 = R_2[/tex]
[tex]\frac{v^2 sin2\theta_1}{g} = \frac{v^2 sin2\theta_2}{g}[/tex]
so after comparing above we will have
[tex]\theta_1 = 90 - \theta[/tex]
so we have
[tex]75 = 90 - \theta_2[/tex]
[tex]\theta_2 = 15 degree[/tex]
Part b)
Time of flight for the first ball is given as
[tex]T_1 = \frac{2vsin\theta}{g}[/tex]
[tex]T_1 = \frac{2(20)sin75}{9.81}[/tex]
[tex]T_1 = 3.94 s[/tex]
Now for other angle of projection time is given as
[tex]T_2 = \frac{2(20)sin15}{9.81}[/tex]
[tex]T_2 = 1.05 s[/tex]
So here the time lag between two is given as
[tex]\Delta t = T_1 - T_2[/tex]
[tex]\Delta t = 3.94 - 1.05[/tex]
[tex]\Delta t = 2.88 s[/tex]