Answer:
[tex]a_{A+B}=0.21m/s^2[/tex]
Explanation:
We will use always Newton's 2nd Law F=ma.
This is the same to say
[tex]m=\frac{F}{a}[/tex]
and
[tex]a=\frac{F}{m}[/tex]
We use the information for the first object mentioned to calculate this force:
[tex]F=ma=(1kg)(1m/s^2)=1N[/tex]
We then calculate the masses of A and B, consdering the acceleration they experiment when the force F=1N is applied to them:
[tex]m_A=\frac{F}{a_A}=\frac{1N}{0.53m/s^2}=1.89Kg[/tex]
[tex]m_B=\frac{F}{a_B}=\frac{1N}{0.352m/s^2}=2.84Kg[/tex]
And for both together we find the acceleration:
[tex]a_{A+B}=\frac{F}{m_{AB}}=\frac{F}{m_A+m_B}=\frac{1N}{4.73Kg}=0.21m/s^2[/tex]