Answer:
[tex]T = 3.23 \times 10^{-83}[/tex]
Explanation:
thickness of aerosol layer is 2.5 km
zenith angle is 40 degree
we know that
[tex]\tau = \epsilon_{ext} . h[/tex]
where
[tex]\epsilon_{ext} = N.\sigma_{ext}[/tex]
[tex]\epsilon_{ext}[/tex] is extinction coefficient
[tex]\sigma_{ext}[/tex] extiction cross section
N = Concentration
[tex]\sigma_{ext} = (2.5 + 0.45)\times 10^{-12} m^2[/tex]
[tex]= 2.95 \times 10^{-12} m^2[/tex]
[tex]\epsilon_{ext} = 2\times 10^7 \times 2.95 \times 10^{-12} m^2 \times m^{-3}[/tex]
[tex]= 5.9 \times 10^{-5} m^{1}[/tex]
[tex]\tau = 5.9 \times 10^{-5} m^{-1} \times 2.5\times 10^3 m[/tex]
[tex]= 14.75\times 10^{-2}[/tex]
transimiitance [tex]T = e^{\frac{-\tau}{\mu}}[/tex]
[tex]T = e^{\frac{- 14.75 \times 10^{-2}}{cos 40}}[/tex]
[tex]T = 3.23 \times 10^{-83}[/tex]